Fig. 2 shows the spectra of the gain and the noise figure of the
amplifier measured with a small signal probe of -30dBm. During
the measurement, the amplifier was saturated with three saturation
lights (whose wavelengths were 1540, 1580 and 1600nm, respec-
tively). The total power of the signal probe and the saturation
light was —14dBm at the amplifier input. The 3dB bandwidth of
the total gain was 75nm (1531-1606nm) with a peak gain of
19.8dB. The dips in the gain spectrum around 1550 and 1575nm
can be eliminated by optimising the equaliser profile [5]. The noise
figure was from 4.9 to 7.4dB (from 3.8 to 6.3dB at the EDFF
input) within the 3dB band. A further increase in the 3dB band-
width can be expected on optimising the pump wavelength of the
FP-LDs.
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Fig. 3 Bit error rate against received power at APD input

a Before transmission
b After 170km transmission

O 1531nm @ 1568nm
A 1540nm A 1578nm
[]1550nm B 1588nm
V 1561 nm V¥ 1597nm
X 1606nm

We demonstrated 9 x 2.5Gbit/'s WDM transmission using our
amplifier as an in-line amplifier. Shorter wavelength (1531, 1540,
1550 and 1561nm) and longer wavelength (1568, 1578, 1588, 1597
and 1606nm) NRZ signals were separately generated and multi-
plexed, and then launched into the transmission line comprising
two spans of 85km DSF. The signal power was —4dBm per chan-
nel at the DSF input. After passing through pre-amplifiers and
1nm optical bandpass filters, the transmitted signals were detected
by an APD optical receiver [6]. Resultant bit error rates (BERs)
before and after transmission are plotted in Figs. 34 and b. Error-
free operation was confirmed and no significant power penalties
were observed for all channels.

In conclusion, the widest 3dB gain bandwidth of 75nm (1531—
1606nm) and low noise figures under 7.4dB were achieved by
combining a gain-flattened EDFFA with an internal Raman
amplifier. Error-free operation has been confirmed in an in-line
amplifier configuration. By selecting the dispersion of the DCF,
ultra-wideband amplifiers will have the additional ability to com-
pensate for fibre dispersion.
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Combining adaptive sigmoid packet and
trace neural network for fast invariance-
learning

Han Chuan Peng, Li Feng Sha, Qiang Gan and Yu Wei

By replacing the commonly used: sigmoid neuron activation
function with an adaptive sigmoid packet, the invariance
extraction of a trace neural network can be effectively enhanced
and speeded up for fast varying sample sequences. The
performance is compared with several existing models.

Network and algorithm: One of the main problems in neural net-
works and machine learning is how to design effective and fast
algorithms for invariance extraction [1]. Recently, a trace neural
network (TNN) has been proposed to track the variation of input
sample sequences [1, 2] and to self-organise to produce significant
representations [2]. However, TNN suffers from instability when
input samples vary extremely from one to another [1, 2]. At the
same time, some existing networks, such as the back-propagation
(BP) network [3] and quantum neural network (QNN) [4], cannot
learn invariance at high speed with good accuracy. In this Letter,
a new learning scheme using a sigmoid packet as the neuron acti-
vation function is introduced into TNN to attack the problem.

A sigmoid packet f'is defined as the linear combination of a set
of sigmoid functions {s,, n = 1, 2, ..., N} with different amplitudes
{h,}, slopes {a,} and shifts {b,}:
> " &

1+ exp(~an - net; + by,)

n=1

N
fnet;) = Z hpsn =
n=1

where net; is the weighted sum of inputs to the jth neuron. This
sigmoid packet is used as the neuron activation function instead of
the commonly used sigmoid function in the multilayer perceptron,
and during learning, all parameters {4,, a,, b,} can be adjusted for
adaptive shape-refining, Note that several slowly varying areas are
introduced in the middle of the activation function to reduce the
sensitivity and instability of the neuron to the varying input. This
can be deduced as an adaptive version of the small-derivative rule
for neural network design [5] to improve the generalisation of neu-
ral networks. These slowly varying areas can also be examined as
quantum stairs [4] which merge fuzzy logic principles to detect and
identity some uncertainties in pattern recognition problems.
Consider an M-class pattern recognition problem treated by a
three-layer feedforward TINN, which contains a linear input layer
(IL) with I neurons, a nonlinear hidden layer (HL) with J neurons
for feature extraction, and a nonlinear output layer (OL) with M
common sigmoid neurons for classification. HL consists of neu-
rons employing the sigmoid packet activation function described
by y, = AAZ L, w;x), where x,, is the ith input and wy, is the connec-
tion weight from the ith input neuron to the jth neuron in HL.
Define the trace of the jth neuron corresponding to the mth class
of input patterns as 7, (1) =n7T,,(t - 1) + A —my;(5) 0O <m < 1),
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where M is the trace factor. Then, the learning of TNN can be for-
mulated as the minimisation of the cost function E = SEF +
r-MEF (r 2 0) [2], where r is a factor to balance the self-influence
of a neuron and the mutual-influence from other neurons. The
self-energy function (SEF) is defined as SEF() = 0.5Z,L, %7,
[Tt — 1) — y(OF and the mutual energy function (MEF) is
defined as MEF(y) = 0.5Z L, mef] y(1)], where mefl.] is generally
an even function which is monotonically increasing on the positive
semi-axis and is able to produce meaningful sparse codes of input
patterns via mutual inhibition between neurons [2]. In this Letter,
mef(y) = 1n(1 + y?) will be used [2, 6]. To make this TNN into a
better adaptive and self-organising learning machine for unstable
input pattern sequences, the following supervised self-organising
(SSO) learning scheme of HL utilising the sigmoid packet is pro-
posed in the ordinary gradient-descent way:

N
Aw(t) = K - Z Anhnsa (1 — sn):l -z (2)
n=1
Ahn(t) = Kj * S
Aan(t) = Kj - hnsa(l — sn) - net; (3)

Abp(t) = K - hnsn(sy, — 1)

K;j = —cd{[(1 = B)(y; — Tmj +7 -5/ (1 +y5)] + BA;}
<ok, 0<8<1) (@)

where o is a learning factor, and P is a coefficient for balancing
the effects of the unsupervised trace signal and the supervised
error signal A, which is back-propagated from OL to the jth neu-
ron of HL using the BP algorithm. Apparently, SSO is a unified
learning scheme. If B = 0, SSO is called a quantum trace neural
net (QTNN) and will reduce to a TNN when the common sigmoid
activation function is employed in HL. If B = 1, SSO becomes a
pure QNN. Furthermore, when B = | and the common sigmoid
activation function is ueed in HL, SSO is a BP net. The output
layer OL is trained using the BP algorithm.

Simulation: In solving many realistic invariance learning problems,
the neural net must produce good generalisation with a small
number of training samples. This can be reflected as the contradic-
tion between learning accuracy and average learning sample
sequence length. The QTNN can provide a good compromise in
fast invariance learning. Because the problem of unconstrained
handwritten digit recognition [3] is a typical example of fast-vary-
ing input samples, it is used to verify the above algorithm.

Table 1: Performance comparison of several models

Newvork | Ayemes e |
% Y%
QINN ~1x 10 312 0.90
TNN ~5x 104 6.82 1.03
QNN ~1x 10 3.48
BP net ~5x 10 0.90

A database from the CENPARMI lab in Canada, with 6000
handwritten digits (16 X 16 pixel binary images), is employed. The
numbers of neurons in IL., HL and OL are set to be 20 x 20 (4
pixels for the blank border), 16 x 16, and 10, respectively. Each
neuron in HL is connected to a local input area in IL using a 7 X
7 weight mask. 50 samples per class are used for training, while
the whole database is used for testing. The initial parameters in
QTNN and QNN are chosen as follows: N = 2, a, = a, = 6.68, b,
=6, b, = -6, i, = h, =0.5. All the weights are uniformly initialised
on [-0.2, 0.2). Learning will stop when the learning accuracy is
>95%. Table 1 gives the learning and testing performance of the
QTNN, TNN, QNN, and BP net on the same database. The aver-
age learning sequence length in training is the product of training
epoch, sample number per class, and the number of classes M.
Because input sequences vary greatly, the error between the actual
recognition rate in testing and the preset recognition rate of 80%
can be a useful measure to compare the generalisation of different
models. The ascendancy of the QTNN is obvious: it achieves a
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smaller error in testing than TNN or QNN, while its learning time
is much less than TNN or BP net. The better performance of
QTNN compared to TNN confirms the effectiveness of the adap-
tive sigmoid packet neuron activation function. It can also be
noticed that better results are obtained when » = 0.1 than when
= 0. This corroborates the importance of MEF and is in accord-
ance with the previous discussion by Peng [2].
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Fig. 1 Distribution of representations in HL before and after learning

a Initial distribution
b Final distribution with » = 0
¢ Final distribution with r = 0.1

The distribution of representations in HL for all training sam-
ples is shown in Fig. 1. Fig. 1a is the semi-logarithm histogram of
outputs of HL at the beginning. There is no peak around y = 0 or
vy = 1. However, after learning, two additional peaks appear beside
the original one in y = 0.5, as shown in Fig. 15 and c. It can be
noticed that the adaptive sigmoid packet effectively decreases the
distribution on (0, 0.5) and (0.5, 1), makes these peaks clearer, and
produces sparser representations. These new peaks can naturally
suggest that the sigmoid packet activation function adaptively
refines its shape to form several better saturation areas to segment
the representation space. Because sparser representations result in
better classification performance, to some extent the above phe-
nomenon can explain why the QTNN outperforms TNN and
QNN in both recognition rate and Jearning speed.

Conclusion: The adaptive sigmoid packet as a neuron activation
function and the corresponding learning algorithm are proposed
to enhance the invariance extraction of trace neural network. The
performance of the QTNN, especially the fast invariance learning
capacity from a small training sample set, is better than for a
TNN, a QNN, or a BP network.
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Differential Hebbian-type learning
algorithms for decorrelation and
independent component analysis

Seungjin Choi

Differential learning algorithms for decorrelation and independent
component analysis (ICA) are presented. It is shown that the
proposed differential Hebbian-type learning algorithms are able to
successfully decorrelate the non-zero mean-valued data without
any preprocessing. Differential learning is also applied for
independent component analysis (ICA) so that non-zero mean-
valued source signals can be recovered without any preprocessing.
It is demonstrated that modified ICA algorithms using differential
learning have a superior performance compared to conventional
ICA algorithms for the case where the mean values of source
signals are non-zero and are changing.

Introduction: Independent component analysis (ICA) or blind
source separation (BSS) is a fundamental problem encountered in
many applications such as communications, sonar, image process-
ing, and some biomedical applications. In ICA or BSS, the m
dimensional vector of measured signals, x(¢) = [x,(r) - x, (D] is
assumed to be generated from an (unknown) # dimensional vector
of source signals, s(f) = [5,(¢) - s, (5] through an (unknown) lin-
ear generative model, i.e.

x(t) = As(?) (1)

where A is an (m X n) mixing matrix, (m = n). Source signals s(?)
are assumed to be spatially independent and temporally ITD.

In ICA or BSS, the vectors of the measured signal x(¢) are proc-
essed by a linear feedforward neural network whose output y(?) is
given by

y(t) = W(t)x(t) (2)

The connection weight matrix W(#) is updated such that the global
transformation G(f) = W(H)A converge to G(eo) = PA (generalised
permutation matrix) as 1 — oo, where P is a permutation matrix
and A is an nonsingular diagonal matrix.

Since Jutten and Herault’s proposal [1] for an adaptive solution
to ICA or BSS, a variety of approaches [2-5] have been proposed.
One widely-used learning algorithm for ICA has the form of

W(t+1) = W) +n{l— £y @)y (OIW @) (3)

where f(y(2)) = [/i(n(®)) - £ (D))]T is an elementwise nonlinear
function depending on the probability distribution of source sig-
nals s(#). n, > 0 is a learning rate. It is known that f(y(?)) = y(9)
1s a good choice for the sub-Gaussian source signal s(f) and
S{) = tanh(By,(2)) (for B > 2) for the super-Gaussian source sig-
nal s(7). Note that for decorrelation (second-order), the element-
wise function f(y(7)} is chosen as a linear function, i.e. f(y(¥)) = y(¥)
[6].

In most of the literature, zero-mean source signals are assumed.
When the mean of the source signals is not zero, it is necessary to
preprocess the data to eliminate the estimated mean value from
the data. However, if the mean values of the source signals are
changing, preprocessing would degrade the performance of the
algorithm eqn. 3 since we do not know when the mean values of
the source signals change. In this Letter, we present differential
learning algorithms for decorrelation and ICA which are able to
decorrelate the measured signals and separate mixtures of source
signals successfully when the mean values of the source signals are
changing.

Differential learning algorithms for decorrelation and ICA: The
proposed differential learning algorithms for decorrelation

(whitening) and ICA are inspired by the covariance learning law
[7]. The modified decorrelation algorithm using differential learn-
ing law is described by

W(t+1) = W(t) + n{T - Ay(() Ay" ()W (1) (4)
where

Ay(t) =y({t) —y(t - 1) )
For successful decorrelation when source signals s(f) have non-

zero mean, the stationary points of the averaged version of eqn. 4
should satisfy

E{ly(t) —yOlly(®t) -5®)]"} =0 (6)
where y(7) is the mean of y(?). It can easily be seen that without
any preprocessing, the stationary points of the algorithm in eqn. 3
(with f(y(¥)) = y(?)) do not satisfy eqn. 6 since the algorithm in
eqn. 3 is the correlation learning law.

To understand the algorithm in eqn. 4, we consider the station-
ary points of the averaged version of this algorithm. We introduce
the global transformation matrix G = WA to relate the network
output y(¢) to source signals s(f). Then, we have

y(t) = Gs(t) (7
The mean of s(¢) is defined by $(7). Then, we have
s(t) = 8(t) +8(t) (8)

where E{$(1)} = 0. The corresponding ¥ (¥) and ¥(¢) are defined
by
y(t) = G3(¢) (9)

y(t) = Gs(t) (10)
Using the assumption that source signals s(7) are spatially inde-
pendent and temporally ITID, one can casily show that

E{Ay(H)AyT (1)} = E{3()5T (&)} + E{y(t—1)¥" (t-1)}
=2E{ly(t)-y(®]ly(®)-y®)]"} (11)

Thus, when convergence of the algorithm in egn. 4 is achieved, it
satisfies

E{ly(t) -y®lly®) ~y®)]"} =0 (12)

In a similar manner, the modification of the algorithm in eqn. 3
for ICA is described by

W(t+1) = W(t) +n{I - £(Ay(£) AyT (1)} W (1) (13)

Tt can easily be seen that for the nonlinear odd function f(y(z)), the
stationary points of eqn. 13 satisfy

E{f(Ay(0))AyT (1)} = 2E{£(F(1)7" (t)}
=0 (14)

Computer simulation results: One exemplary simulation result is
provided, for brevity. The observation vector x(7) was generated
by

x(t) = As(¢) (15)
where the mixing matrix A is given by

_ [0129 0.504
A_[0,605 0,951} (16)

Two independent source signals s;(f) and s,(f) were drawn from a
uniform distribution. Over the duration [1, 2000], the means of the
source signals are 5 ,(f) = 0.267 and 5 ,(f) = 0.452. The mean of
5,(#) and s,(7) were changed over the duration [2001, 10000] as fol-
lows: 5 () = -0.503, 5,(r) = -0.417.

As a performance measure, the following performance index PI

was used. It is defined by
— _lgnil*
1)+ -1
) <; max; gz

< g/
PI= Z{<Z max]; 9ig -
(17

3=1 k=1
where g; is the (7, /)th element of the global transformation matrix
G and maxg; represents the maximum value among the elements
in the ith row vector of G, maxg; represents the maximum value
among the elements in the ith column vector of G. When perfect
signal separation is carried out, the performance index PI is zero.
In practice, it is a very small number.
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